

01/26/26

More on general-sum games:  
Stackelberg leader strategies, Nash  
equilibria complexity and algorithms

Your guide:  
Avrim Blum

[Readings: Ch. 2.1-2.4 of AGT book]

# One more interesting game

“Ultimatum game”:

- Two players “Splitter” and “Chooser”
- 3<sup>rd</sup> party puts \$10 on table.
- Splitter gets to decide how to split between himself and Chooser.
- Chooser can accept or reject.
- If reject, money is burned.

# One more interesting game

“Ultimatum game”: E.g., with \$4

Splitter: how much  
to offer chooser

Chooser:  
how  
much to  
accept

|   |       |       |       |
|---|-------|-------|-------|
|   | 1     | 2     | 3     |
| 1 | (1,3) | (2,2) | (3,1) |
| 2 | (0,0) | (2,2) | (3,1) |
| 3 | (0,0) | (0,0) | (3,1) |

# Stackelberg leader strategies

Strategy such that if you announce it and opponent best-responds to you, you are best off.

Splitter: how much to offer chooser

Chooser:  
how  
much to  
accept

|   |       |       |       |
|---|-------|-------|-------|
|   | 1     | 2     | 3     |
| 1 | (1,3) | (2,2) | (3,1) |
| 2 | (0,0) | (2,2) | (3,1) |
| 3 | (0,0) | (0,0) | (3,1) |

# Stackelberg leader strategies

Strategy such that if you announce it and opponent best-responds to you, you are best off.

Need not be a Nash equilibrium.

|            | Compete | Leave |
|------------|---------|-------|
| Price high | (3,3)   | (6,1) |
| Price low  | (2,0)   | (4,1) |

Leader strategy: prob 1/3 on high, 2/3 on low. Think of as  $\lim_{\epsilon \rightarrow 0} (1/3 - \epsilon, 2/3 + \epsilon)$

# Stackelberg leader strategies

Can solve efficiently. Say we're row player:

- For each column  $j$ , solve for  $p$  to maximize our expected gain s.t.  $j$  is best-response.
- Choose best.

|            | Compete | Leave |
|------------|---------|-------|
| Price high | (3,3)   | (6,1) |
| Price low  | (2,0)   | (4,1) |

Leader strategy: prob 1/3 on high, 2/3 on low. Think of as  $\lim_{\epsilon \rightarrow 0} (1/3 - \epsilon, 2/3 + \epsilon)$

# Stackelberg leader strategies

Can solve efficiently. Say we're row player:

- For each column  $j$ , solve for  $p$  to maximize our expected gain s.t.  $j$  is best-response.
- Choose best.
  - For each  $j$ , solve for  $p_1, \dots, p_n \geq 0, \sum_i p_i = 1$ , to maximize our gain  $\sum_i p_i R_{ij}$  subject to:
    - For each  $j'$ ,  $\sum_i p_i C_{ij} \geq \sum_i p_i C_{ij'}$  (the column player prefers  $j$ )

# Hardness of computing Nash equilibria

Looking at 2-player n-action games.

2 types of results:

- NP-hardness for NE with special properties  
[Gilboa-Zemel] [Conitzer-Sandholm]
  - Is there one with payoff at least  $v$  for row?
  - Is there one using row #1?
  - Is there more than one?
  - ...
- PPAD-hardness for finding any NE.  
[Chen-Deng][Daskalakis-Goldberg-Papadimitriou]

# Hardness of computing Nash equilibria

## NP-hardness for NE with special properties

Basic idea:

- Given 3-SAT formula  $F$ , create a game with one row for each literal, variable, & clause.
- Also a default attractor action  $f$ .  $C = R^T$ .
- Somehow set things up so that except for  $(f,f)$ , all NE must correspond to satisfying assignments.

What about just finding some NE?

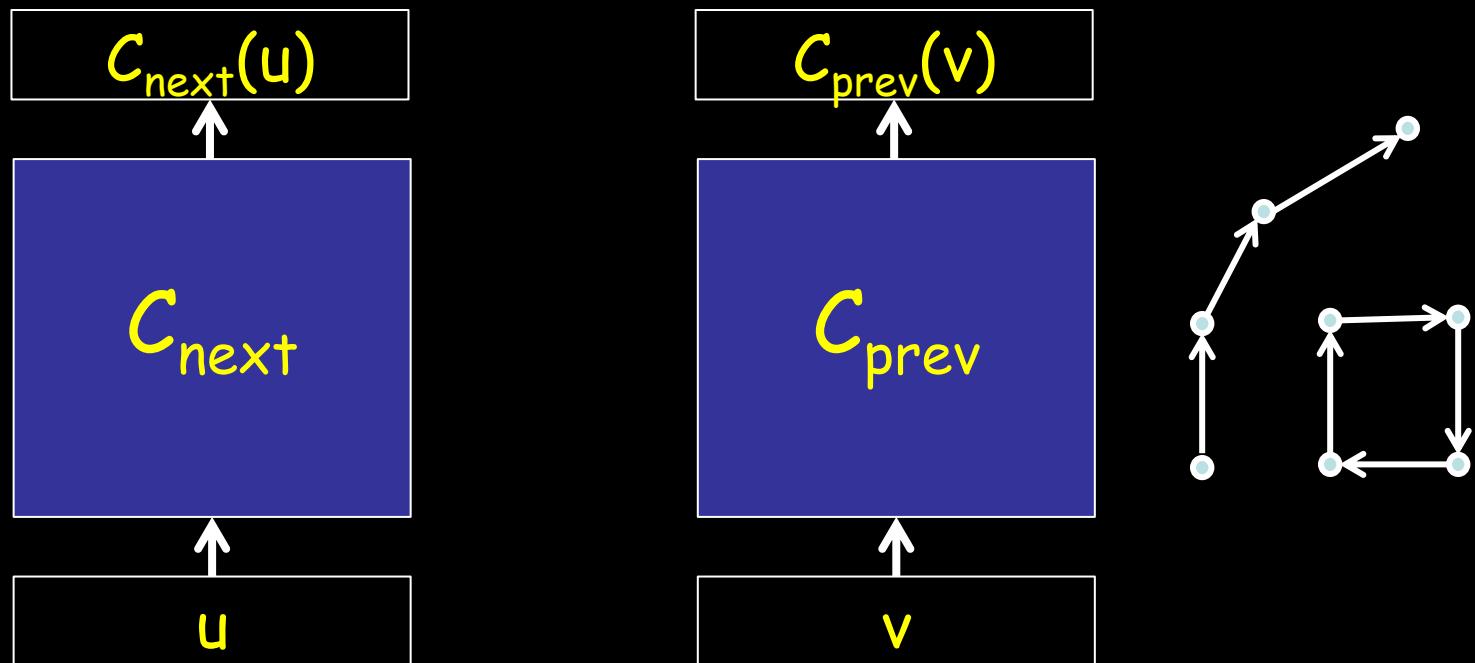
This is "PPAD" hard.

What's that?

# What about just finding some NE?

Consider the following problem:

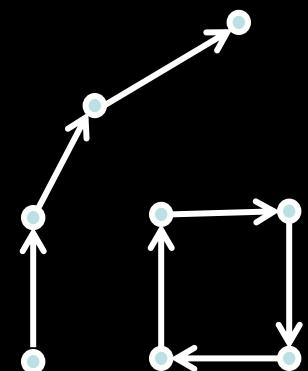
- Given two circuits  $C_{\text{next}}$  and  $C_{\text{prev}}$ , each with  $n$ -bit input,  $n$ -bit output.
- View as defining directed graph  $G$ :  
 $u \rightarrow v$  iff  $C_{\text{next}}(u) = v$  and  $C_{\text{prev}}(v) = u$ . (indeg  $\leq 1$ , outdeg  $\leq 1$ )



# What about just finding some NE?

Consider the following problem:

- Given two circuits  $C_{\text{next}}$  and  $C_{\text{prev}}$ , each with  $n$ -bit input,  $n$ -bit output.
- View as defining directed graph  $G$ :  
 $u \rightarrow v$  iff  $C_{\text{next}}(u) = v$  and  $C_{\text{prev}}(v) = u$ . (indeg  $\leq 1$ , outdeg  $\leq 1$ )
- Say  $v$  “unbalanced” if  $\text{indeg}(v) \neq \text{outdeg}(v)$ .
- If  $0^n$  is unbalanced, then find another unbalanced node. (must exist)



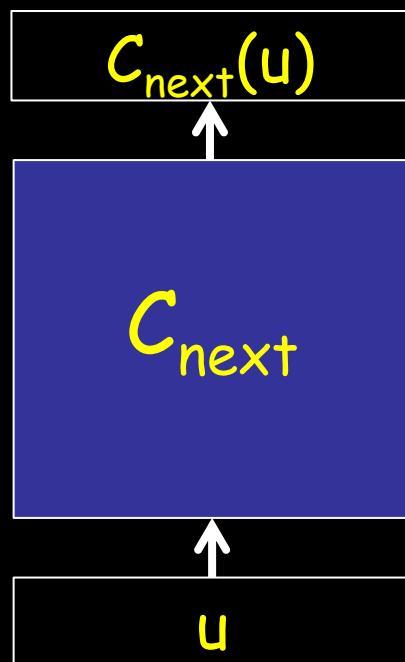
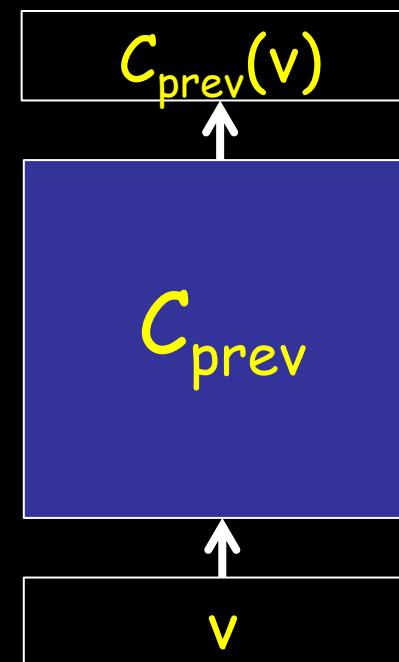
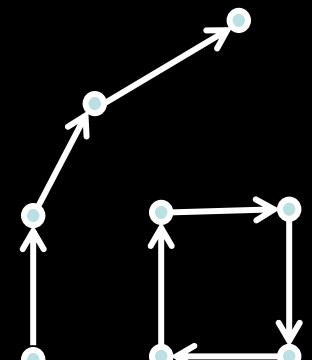
# This is PPAD “END OF THE LINE”

# What about just finding some NE?

Why isn't this problem trivial? Say  $\text{outdeg}(0^n)=1$ .

- $\text{for}(u = 0^n; u == C_{\text{prev}}(C_{\text{next}}(u)); u = C_{\text{next}}(u));$

Unfortunately, the path might be exponentially long.

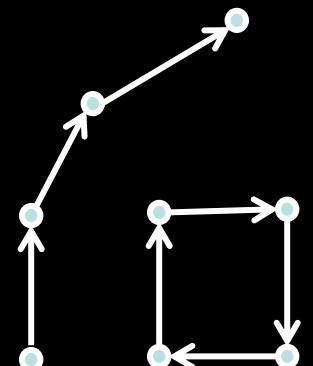


# What about just finding some NE?

Not going to give proof that Nash is PPAD-hard.

Instead, give algorithm to show why Nash is in PPAD.

Also another proof of existence of NE



# Lemke-Howson algorithm (1964)

Preliminaries: [following discussion in Ch 2]

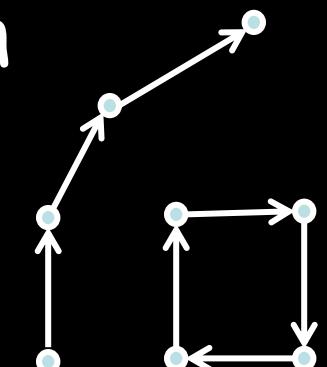
Given: matrices  $R, C$  with positive entries.

- For simplicity, convert to symmetric game  $(A, A^T)$ :  $A =$

|       |     |
|-------|-----|
| 0     | $R$ |
| $C^T$ | 0   |

Claim: If  $([x,y], [x,y])$  is a symmetric equilib in  $(A, A^T)$ , then  $(x/X, y/Y)$  is an equilib in  $(R, C)$ .

Use  $X = \sum_i x_i$ ,  $Y = \sum_i y_i$



Pf: Each player getting payoff  $x^T R y + y^T C^T x$  with no incentive to deviate.

# Lemke-Howson algorithm (1964)

Given  $n \times n$  symmetric game  $A$ , find symm equil.

Consider the  $2n$  linear constraints on  $n$  vars:

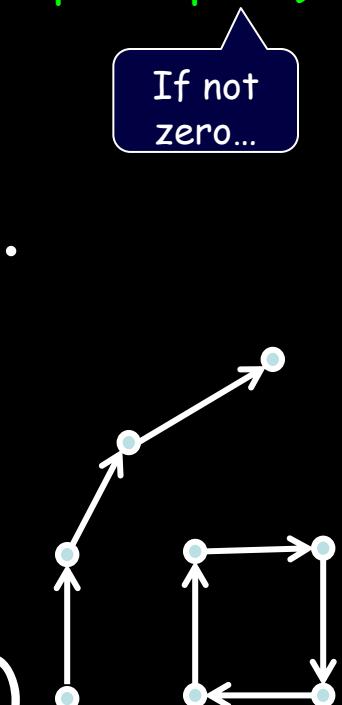
- $A_i z \leq 1$  for all  $i$ .  $(A_i x \leq 1/Z \text{ where } x_i = z_i/Z)$
- $z_j \geq 0$  for all  $j$ .  $z = (z_1, z_2, \dots, z_n)$

If not zero...

Assume  $A$  is full rank, all  $A_{ij}$  non-neg.

- Implies have a bounded polytope.
- And all vertices have  $n$  tight constraints (at equality).

Alg will start at the origin (a vertex) and move along edges to a NE.



# Lemke-Howson algorithm (1964)

Given  $n \times n$  symmetric game  $A$ , find symm equil.

Consider the  $2n$  linear constraints on  $n$  vars:

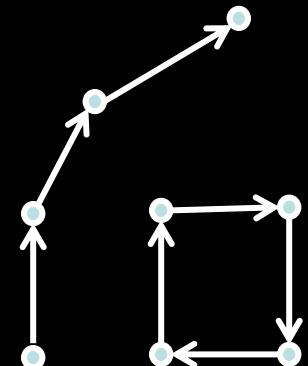
- $A_i z \leq 1$  for all  $i$ .  $(A_i x \leq 1/Z \text{ where } x_i = z_i/Z)$
- $z_j \geq 0$  for all  $j$ .  $z = (z_1, z_2, \dots, z_n)$

If not zero...

Strategy  $i$  is "represented" if  $A_i z = 1$  or  $z_i = 0$  (or both)

What if all strategies represented?

- Either  $z = (0, \dots, 0)$  or  $(x, x)$  is a symmetric Nash.



# Lemke-Howson algorithm (1964)

Alg: start at  $(0, \dots, 0)$ , move along edge.

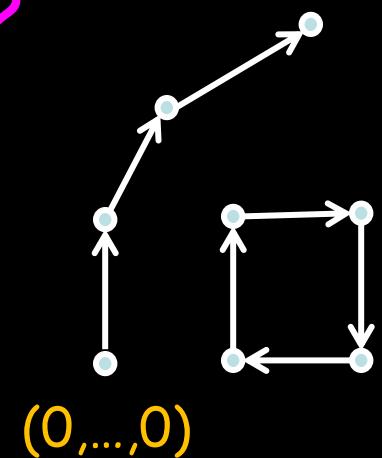
(Relax one of  $z_j=0$  and move until hit some  $A_i z=1$ )

- If  $i=j$ , then all strategies represented!
- Else  $i$  is represented twice.

Strategy  $i$  is “represented” if  $A_i z=1$  or  $z_i=0$  (or both)

What if all strategies represented?

- Either  $z=(0, \dots, 0)$  or  $(x, x)$  is a symmetric Nash.



# Lemke-Howson algorithm (1964)

Alg: start at  $(0, \dots, 0)$ , move along edge.

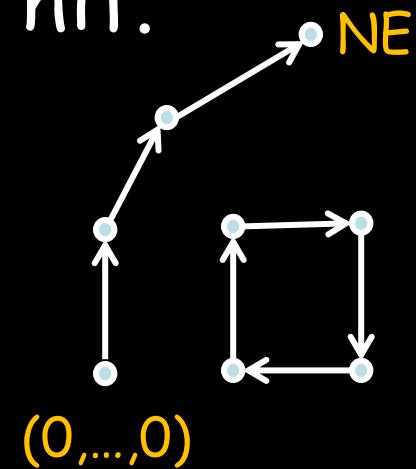
(Relax one of  $z_j=0$  and move until hit some  $A_i z=1$ )

- If  $i=j$ , then all strategies represented!
- Else  $i$  is represented twice.

In general, take strategy represented twice and relax constraint you didn't just hit.

Claim: can't cycle or reach  $(0, \dots, 0)$ .

End is a Nash equilibrium.



# Lemke-Howson algorithm (1964)

Example:

|   |   |   |
|---|---|---|
| 0 | 0 | 0 |
|---|---|---|

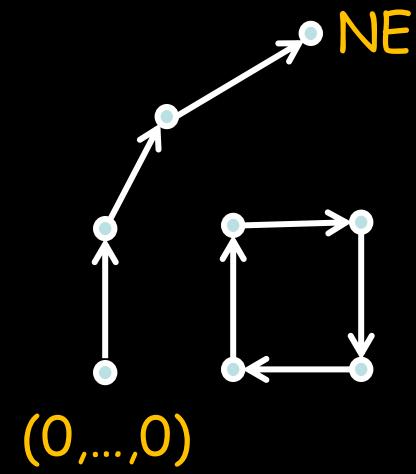
|   |   |   |
|---|---|---|
| * |   |   |
| - | 0 | 0 |

|   |   |   |
|---|---|---|
| * | * |   |
| - | 0 | - |

|   |   |   |
|---|---|---|
| * | * |   |
| - | - | 0 |

|   |   |   |
|---|---|---|
| * |   |   |
| 0 | - | 0 |

|   |   |   |
|---|---|---|
| * |   |   |
| - | 0 | 0 |
| 0 | 0 | 0 |



# Lemke-Howson algorithm (1964)

One implication: every non-degenerate game has an odd number of Nash equilibria.

